quinta-feira, 17 de março de 2016

Matemáticos descobrem um padrão inesperado nos números primos

Os matemáticos descobriram um padrão surpreendente na expressão de números primos, revelando um “viés” antes desconhecido pelos pesquisadores.

Números primos só podem ser divididos por um ou por si próprios: é o caso do 2, 3, 5, 7, 11, 13, 17 etc. Eles têm grande utilidade na criação de algoritmos na criptografia de chaves públicas, e por vezes aparecem na natureza – por exemplo, certas cigarras só saem da toca após 7, 13 ou 17 anos.

Ainda não sabemos se existe um padrão que explica esta sequência, e não existe nenhuma fórmula para saber quando um número primo vai aparecer nessa sequência; os matemáticos ainda não descobriram uma função para tanto.

No entanto, a maioria dos matemáticos concorda que existe algo de aleatório na distribuição dos números primos. Ou, pelo menos, é o que eles pensavam. Recentemente, dois matemáticos decidiram testar esta hipótese de “aleatoriedade”, e descobriram que ela não está correta.

Viés inesperado

Segundo a New Scientist, os pesquisadores Kannan Soundararajan e Robert Lemke Oliver, da Universidade de Stanford (EUA), detectaram um viés inesperado na distribuição de primos consecutivos.

Os matemáticos fizeram a descoberta ao checar a aleatoriedade nos primeiros cem milhões de números primos. Eles só podem terminar em 1, 3, 7 ou 9 (se tiverem mais de um dígito); matemáticos acreditavam que dois números primos seguidos terminariam com o mesmo dígito 25% das vezes.

No entanto, isso não acontece. A chance de um número primo terminado em 1 ser seguido por outro também terminado em 1 é de apenas 18,5%. Números primos consecutivos terminados em 3 e 7 aparecem 30% das vezes; e primos terminados em 9, cerca de 22%. Este não é um padrão perfeitamente aleatório.

Os matemáticos foram mais longe e analisaram o primeiro trilhão de números primos. A distribuição se aproxima de algo aleatório, mas o viés persiste. Ele existe até mesmo quando você não usa a numeração em base 10. Ou seja, isso é mesmo algo inerente aos números primos – e é algo imprevisto.

“Sabemos vergonhosamente pouco”

No estudo, Soundararajan e Lemke Oliver tentam encaixar essa descoberta na chamada “conjectura de k-tuplos”, criada pelos matemáticos G. H. Hardy e John Littlewood no início do século XX – eles deram as bases para as pesquisas modernas sobre números primos.

Essa conjectura ainda não foi provada; no entanto, sem ela – e sem a conhecida hipótese de Riemann – a compreensão dos matemáticos sobre números primos fica terrivelmente restrita. “O que sabemos é vergonhosamente pouco”, diz Lemke Oliver à Nature News.

Spencer Greenberg, matemático e fundador do ClearerThinking.org, diz ao Gizmodo que os números primos, assim como os dígitos do pi, parecem muito aleatórios, mas não são. “Eles são determinados precisamente pelas propriedades dos números. É que, quando nós olhamos para eles, nossos cérebros não conseguem ver o padrão, por isso, eles parecem uma loucura aleatória.”

O estudo é fascinante, e como diz o matemático Andrew Granville à New Scientist, “isso nos dá uma compreensão maior, cada avanço ajuda. Se o que você toma por óbvio está errado, isso obriga a repensar outras coisas que você acha que sabe”.

Referências:

Texto produzido por: George Dvorsky em 16 de março de 2016 às 8:09, Acesso em<http://m.gizmodo.uol.com.br/vies-numeros-primos/> Visto em 17 mar 2016.

Nenhum comentário:

Postar um comentário

Questão 178 da prova azul do segundo dia do Enem 2020

(Enem 2020) Suponha que uma equipe de corrida de automóveis disponha de cinco tipos de pneu (I, II, III, IV, V), em que o fator de eficiênc...